S

LBBE

bistro: a library to build large-scale workflows

in computational biology

Philippe Veber
May 23th, 2019

Laboratoire de Biométrie et Biologie Evolutive

LeAds GEMME

%ovﬂ 1€
ALIGMED READS

MAcS2

PEAKS

MEME

N TIFS

Reros G evme

TowTied
REPRODUCIBILITY

e version control ED READS
e containers S2
e deployment
ARS
MEME

N TIFS

EXECUTION

e task distribution

e cluster scheduler
READS LEWIFTE

%OWTI[
REPRODUCIBILITY

e version control ED READS
e containers S2
e deployment
ARS
MEME

N TIFS

EXECUTION

e task distribution

e cluster scheduler

READS LEWIPIE
TowTed / \
REPRODUCIBILITY DEVELOPMENT
e version control Y e resume on failure/change
e containers 2| o interactive experimentation
e deployment e unit/regression testing

N TIFS

EXECUTION

e task distribution

e cluster scheduler

READS LEWIPIE
TowTed / \
REPRODUCIBILITY DEVELOPMENT
e version control Y e resume on failure/change
e containers 2| o interactive experimentation
e deployment e unit/regression testing

" \[reme

RESULTS BROWSING

e organize result hierarchy

e notebooks

Pipelines in computational biology

Typically

e from a few to 10k or 100k steps
e each step is a call to a independant program /script

e many “plumbing” scripts between analysis programs
bash is a popular, but terrible option :

e Programming errors discovered only when commands are executed

e syntax errors
e typos on commands, paths, options
e use of inappropriate file formats

e Resuming after an error or a modification is awkward

Naming and managing intermediate files is a pain

No simple way to distribute calculations

No way to make sure that result files are up-to-date

A tough situation for scient

Pipelines are complex pieces of software

e many programs, usually in many different languages

e no tools to ensure the plumbing between them is correct
Developing a reproducible scientific pipeline is excruciatingly difficult

e requires inhuman attention

e and skills using very varied computer science tools

All of this diverts us from the actual data analysis

Are our best practices really helping?

Scientific pipelines are complex pieces of software
BZ" We need to apply good old software engineering recipes!

e Code reuse

Don't apply best practices, implement them once and for all in a
reusable library

e Separation of concern

Declarative pipeline construction independent of its execution
e Abstraction

Hide a maximum of technical details, provide a uniform API
e Composition

use simple notions like functions and typing to create arbitrarily
complex pipelines easily

— implemented in an OCaml library: bistro

First steps with Bistro

Overview

bistro is an OCaml library consisting of three main components:
1. a module Bistro that introduces a type o workflow representing a
computation

2. a module Bistro_engine that implements a scheduler to actually
run the recipes

3. a module Bistro_bioinfo that provides workflow constructors for
many standard tools in computational biology

The o workflow type

e o workflow represents a set of interdependent computational steps
that produce a single result of type a

each step can be described as a shell script or an OCaml function

this script will typically refer to other workflows, which are
dependencies of the workflow being defined

the result of a workflow is typically cached “somewhere”

B¥" in a location which depends on the code of the script/function

OCaml syntax

An OCaml program is a sequence of definitions:

let i = 0;; (* define an integer wariable named [i] *)
let j=1i+1;; (* reuse a previous definition to make a new one *)
let s = "bistro";; (* a string variable *)

For functions, the syntax is:

let £ x =x + 1;; (* function definttion *)

let k = f i;; (* function call *)

let g xy=x+7y;; (¥ function with several arguments *)

let 1 =g i j;; (¥ calling a function with several arguments *)

Programs are typically fed to:

e an interpreter (like in python or R)

e or a compiler to produce an executable

Every expression has a type, which can be inferred before execution:

let i

val i

let j
val j

let s

val s

let f
val £

let g
val g :

=053
int = 0

=i+ 1;;

]
-

int

= "bistro";;

string = "bistro"

x=x+1;;
int -> int = <fun>

Xy =x+ty;;
int -> int -> int

<fun>

Parameterized types

Types can have a parameter that expresses additional details on values:

#let 11 =[1; 2 ; 3 1;; (* a list of integers *)
val 11 : int list = [1; 2; 3]

let 12 = ["a" ; "b" ; "c" 1;; (* a list of strings *)
val 12 : string list = ["a"; "b"; "c"]

let 13 = [];; (* an empty list *)
val 13 : o 1list = []

do not mess with the com

Types are inferred and checked to detect programming errors
let f x=x+ 1;;

val £ : int -> int = <fun>

Error: This expression has type a list

but an expression was expected of type int

10

Our first workflows

let i = Workflow.int 41;; (* A constant integer workflow *)
val i : int workflow = <abstr>

(* This s one way to add a step to a preexisting workflow x *)
let/workflow f x =

[heval x] + 1;;

val £ : int workflow -> int workflow = <fun>

(* More complexz workflows are simply built by function application *)
let answer = f i;;

val answer : int workflow = <abstr>
[%eval ...] is used to access the result of a workflow in the definition

of another workflow.

11

Path workflows (1)

o path is an abstract type representing paths in the filesystem. It is
typed to represent the format of the file.

let data = Workflow.input "data.tsv";; (* Input file workflow *)
val data : o path workflow = <abstr>

letworkflow wc file = (* using path workflows *)
In_channel.read_lines [Jpath file]
|> List.length;;

val wc : a path workflow -> int workflow = <fun>

[%path ...] is used to access the location where the result of a path
workflow is stored.

12

Path workflows (2)

(* Definition of a path workflow *)

let%pworkflow remove_comments file =
In_channel.read_lines [/path file]
|> List.filter “f:(Fn.not (String.is_prefix “prefix:"#"))
|> Out_channel.write_lines [%dest];;

val remove_comments : o path workflow -> B path workflow = <fun>

let nb_points = wc (remove_comments data);;

val nb_points : int workflow = <abstr>

[%idest] represents the location where to save the result of a path

workflow.

13

Shell workflows

let wget url = Workflow.bash [Jscript "
Here I can write a bash script
wget -0 {{dest}} {{string url}}
"15;
val wget : string -> o path workflow = <fun>

e Python, R, perl scripts can be created the same way

e other shell workflow constructors are available for more complex
wrapping

14

Tools available in Bistro bioinfo

The list is regularly expanding, currently :

Art

Bed
Bedtools
Bowtie2
Bowtie
ChIPQC
Deeptools
Deseq2
Diamond
Ea_utils
Ensembl

Fastool

FastQC
Fastq
Fastq_screen
Hisat2
Htseq

Idba
Kallisto
Macs2
Meme_suite
Picard_tools
Prokka
Quast

Samtools
Silix

Spades
Sra_toolkit
Srst2
Transdecoder
Tophat
Trinity
Ucsc_gb

Velvet

15

A high-level interface

OCaml module interfaces offer a powerful way to build clear and highly
reusable APIs (here on Unix tools)

module Bistro_unix : sig
val wget
?no_check_certificate:bool ->
7user:string ->
?password:string ->

string -> #file pworkflow

val gunzip : o gz pworkflow -> o pworkflow
val bunzip2 : a bz2 pworkflow -> a pworkflow

val head :
n:int ->
#text_file pworkflow ->
#text_file pworkflow

end
16

nother example

The type of wrappers summarizes each tool’s interface and is used by the
compiler to check our pipeline

module Bowtie2 : sig
val bowtie2_build :

7?large_index:bool ->
?noauto:bool ->
7packed:bool ->
?bmax:int ->
7bmaxdivn:int ->
?dcv:int ->
(* [...] *)
?seed:int ->
?cutoff:int ->
fasta pworkflow ->
index pworkflow

end

17

A typical (small) pipe

open Bistro_bioinfo
open Bistro_utils

let sample_fq = Sra_toolkit.fastq_dump (" id "SRR217304")
let genome = Ucsc_gb.genome_sequence ~sacCer2
let index = Bowtie.bowtie_build genome
let mapped_reads =
Bowtie.bowtie “v:2 index (“single_end [sample_fql)
let peaks =
Macs2. (callpeak “qvalue:100. sam [mapped_reads] / narrow_peaks);;
let genome_2bit = Ucsc_gb.genome_2bit_sequence ~sacCer2
let sequences = Ucsc_gb.twoBitToFa peaks genome_2bit
let motifs = Meme_suite.meme_chip sequences

let repo = Repo.[

item ["peaks"] peaks ;
item ["motifs"] motifs

let loggers = [Console_logger.create ()]
let () = Repo.build “loggers “np:4 “mem:("GB 4) “outdir:'"res" repo

18

A typical (small) pipeline

open Bistro_bioinfo
open Bistro_utils

let sample_fq = Sra_toolkit.fastq_dunf
let genome = Ucsc_gb.genome_sequence
let index = Bowtie.bowtie_build genon
let mapped_reads =

Bowtie.bowtie “v:2 index (" single_¢
let peaks =

Macs2. (callpeak “qvalue:100. sam [
let genome_2bit = Ucsc_gb.genome_2bit|
let sequences = Ucsc_gb.twoBitToFa pe]
let motifs = Meme_suite.meme_chip seq|

let repo = Repo.[
item ["peaks"] peaks ;
item ["motifs"] motifs

let loggers = [Console_logger.create]
let () = Repo.build “loggers “np:4 “mf

ucse_gb.chromosome_sequence(sacCer2)

ucsc_gb.genome_sequence

| bowtie_build | sratoolkit.fastq_dump

samtools.indexed_bam_of_sam

v

reads.bam
| macs2.callpeak | | ucse_gb.2bit_sequence(sacCer2)
Al \

macs2_peaks.narrowPeak sacCer2.2bit

ucse_gb.twoBitToFa

18

Executing a workflow

e up to now, we have just described a pipeline, nothing was run

e define output files of the analysis, and the way they should be

organized in a directory
let repo = Repo.[
item ["peaks"] peaks ;
item ["motifs"] motifs ;

155

e actually run the pipeline specifying resources and (optional) logging

let loggers = [Console_logger.create () 1;; (* Logs event on standard output *)
let () = Repo.build “loggers "np:4 “mem:("GB 4) “outdir:'"res" repo;;

e this will create a result directory equivalent to
res
|-- motifs
| |-- index.html
| | -- meme_out
| L]

“-- peaks

19

Complex, generic pipelines: just use functions!

let one_sample_analysis mapping_meth s =
sample_data s
|> stepl “param:true
|> step2
|> mapping_meth

let pipeline mapping_meth samples =
List.map one_sample_analysis samples

|> differential_analysis

let comparison_pipeline samples =
compare_results
(pipeline mapping _methl samples)
(pipeline mapping_meth2 samples)

20

let one_sample_analysis mapping_meth s

sample_data s

|> stepl “param:true
|> step2

|> mapping_meth

let pipeline mapping_meth samples =
List.map one_sample_analysis samples

|> differential_analysis

let comparison_pipeline samples =
compare_results
(pipeline mapping _methl samples)
(pipeline mapping_meth2 samples)

STEP1

STEP2

20

Complex, generic pipelines: just use functions!

let one_sample_analysis mapping_meth s =
sample_data s
|> stepl “param:true
|> step2
|> mapping_meth

let pipeline mapping_meth samples =
List.map one_sample_analysis samples

|> differential_analysis

let comparison_pipeline samples =
compare_results
(pipeline mapping _methl samples)
(pipeline mapping_meth2 samples)

20

generic pipelines: just use functions!

let one_sample_analys|

sample_data s SAMPLEI SAMPLE2 SAMPLE3

|> stepl “param:truy

[> step2 L Y l

|> mapping_meth STEP1 STEP1 STEP1
let pipeline mapping_ l Y J

List.map one_sample STEP2 STEP2 STEP2

|> differential_ana|

I

let comparison_pipeli| 5 0 5

compare_results

(pipeline mapping \ | /

(pipeline mappin
S LR DIFF. ANALYSIS

20

Complex, generic pipelines: just use functions!

let one_sample_analysis mapping_meth s =
sample_data s
|> stepl “param:true
|> step2
|> mapping_meth

let pipeline mapping_meth samples =
List.map one_sample_analysis samples

|> differential_analysis

let comparison_pipeline samples =
compare_results
(pipeline mapping _methl samples)
(pipeline mapping_meth2 samples)

20

Complex, generic pipelines: just use functions!

let one_sample_aj
sample_data s

|> stepl “paray ‘ SAMPLE2 ‘ ‘ SAMPLEL ‘ ‘ SAMPLE3 ‘
|> step2 \
|> mapping_met}

STEP1 STEP1 STEP1 ‘ ‘STEP] ‘ ‘STEP] ‘ ‘STEP] ‘

let pipeline mapy l l l l l l

List.map one_sg
STEP2 STEP2 STEP2 STEP2 STEP2 STEP2

|> differential l l l l l l

let comparison_p] ‘ 2 H ? H 9 H 9 9 ‘ 9

compare_resulty

(pipeline maj
DIFF. ANALYSIS DIFF. ANALYSIS

COMP. RES.

(pipeline may

20
J

What did we gain?

Distributed execution

e use task independance to run as many commands as possible
simultaneously

e each task may be given several processors
e control over available number of processors and total memory

e if required, intermediate files are deleted when they are not needed
anymore

21

Resume-on-failure, resume-on-change

e if some step fails, correct it and run again
e the scheduler will start from where it stopped automatically
e only needed tasks will be run again

e same thing when modifying the pipeline during development

As an example, after changing

let wget url =
Workflow.bash [/script "wget -0 {{dest}} {{string url}}"]

to

let wget url =
Workflow.bash [Yscript "wget -F -0 {{dest}} {{string url}}"]

all workflows built with wget and those that depend on them will be
rebuilt automatically.

22

Painless deployment

e only required install: OCaml + bistro

e easy and portable thanks to OPAM (OCaml package manager)
e all tools will be downloaded on the fly

e with the exact version specified in bistro

e no actual install on the system
e this is achived using Docker or Singularity containers

e can be turned off (and then bistro assumes tools are installed on the
system)

23

Logging/reporting

Console output for events

[2017-09-30
[2017-09-30
[2017-09-30
[2017-09-30
[2017-09-30
[2017-09-30
[2017-09-30
[2017-09-30
[...]

:04:
:04:
:04:
:04:
:05:
:05:
:05:
OBk

52.

52
52

52.
10.
10.
42.

42

000000+02:
.000000+02:
.000000+02:
000000+02:
000000+02:
:00]

000000+02

000000+02:
.000000+02:

00]
00]
00]
00]

00]
00]

started ucsc_gb.2bit_sequence(sacCer2).fd7a33
started sra.fetch_srr(SRR217304).8d256e

started ucsc_gb.chromosome_sequences (sacCer2).20c330
started ucsc_gb.fetchChromSizes.eal967

ended ucsc_gb.fetchChromSizes.eal967 (success)

ended ucsc_gb.2bit_sequence(sacCer2) .fd7a33 (success)
ended sra.fetch_srr(SRR217304) .8d256e (success)
started sratoolkit.fastq_dump.932827

24

Logging/reporting

Console output for errors

#
Task a0ef08ae3b09f1dc80b6cfIcaababe2 failed

#

#

Ended with exit code 255

#
###

##

#

| Submitted script |

(docker run --log-driver=none --rm -v /home/pveber/w/2017-10-02-groupe-ngs/code/_bistro/cache/fd7a337e1fc261da9e387a17c00e7b8b,
#

| STDOUT |

| STDERR

twoBitReadSeqFrag in chrl end (230319) >= seqSize (230208)

25

Logging/reporting

HTML execution report

EVENT LOG

2017-09-30
20:18:14

2017-09-30
20:18:14

2017-09-30
20:17:45

2017-09-30
20:17:45

2017-09-30
20:17:45

2017-09-30
20:17:13

STARTED

DONE

STARTED

DONE

DONE

STARTED

macs2.callpeak

223b44b!

outcome: stdout stderr
ccommand:
(docker run --log-driver=none --rm -v /home/pveber/w/2017-10-82-groupe-ngs/code/ _bistro/cache/93282712a92c50c18
e6827fcdr9dbla7:/bistro/data/90e893r F548ae208390a659 72434907 ~v /home/pveber/w/2017-10-82-groupe -ngs/code/_bis
tro/cache/bcae1T847b9ce3r5ca63499c3ae26171: /bistro/data/58e996b44437e25ap52e4bb3c09504CT ~v /home/pveber/w/201
7-16-82-groupe -ngs/code/_bistro/tmp/3ef1d878c01223b44b99352b2F6835ab/ tmp : /bistro/tmp -v /home/pveber/w/2017-10-
02-groupe-ngs/code/_bistro/tmp/3ef1d878c01223b44b39352b276835ab: /bistro -1 pveber/bowtie:1.1.2 bash -c 'bowtie

-5 -v 2 -p 4 /bistro/data/58e996D4443e25ab52e4bb3c09504cT/index /bistro/data/9deB93T548ae2d8390ae859Tad4349d7
/bistro/dest’)

bowtle
bowtie_build
sratoolkit.fastq_dump

bowtle_bulld

26

Logging/reporting

Task graph representation

ucsc_gh.chromosome._sequence(sacCer2)
ucsc_gb.genome_sequence

uesc_gb.2bit_sequence(sacCer2)

‘ macs2 callpeak ‘

v v

macs2_peaks narrowPeak sacCer2.2bit

27

Petty error detector

Compiler assistance before running the pipeline

e against syntax errors

let mapped_reads = Bowtie.bowtie “v:2 index (" single_end [sample_fq]l;;

Error: Syntax error: ')' expected, the highlighted '(' might be unmatched

e against typos

let index = Bowtie.boqtie_build genome;;

Error: Unbound value Bowtie.boqtie_build
Hint: Did you mean bowtie_build?

e against inappropriate formats
let index = Bowtie.bowtie_build sample_fq;;

Error: This expression has type sanger_fastq pworkflow
but an expression was expected of type fasta pworkflow

28

Significant reduction of mental load

e no need to find names for intermediate files, nor to care about them
at all

e by construction, impossible to give a tool a wrong path
e no need to remember how programs should be called

e the type of OCaml functions can be followed to remember how to
use a tool (with assistance from the compiler)

More time to think on the pipeline steps! I

29

Final words

Many benefits of a library embedding :

e a LOT more code reuse between projects
e advanced workflow construction

e map sample collections, optional parts
e use of functors to enhance pipeline reuse

e Costless derivation of web interfaces for workflows
Current developments:

e Multi-node distribution

e Notebook publication system

30

Web interface for workflows (prev

Define an input to your pipeline, and automatically derive an input form

type input = { ChIP-seq pipeline
sra_identifier : string ;
genome : string ; sra_identifier
macs2_qgvalue_threshold : float ; | genome

macs2_qvalue threshold <

i ¢ int
number_of_motifs ’ number of motifs 2

}

[6@deriving bistro_form]

Run

31

Web interface for workflows (prev

module ChIP_seq_pipeline = struct

type input = {
sra_identifier : string ;
genome : string ;
macs2_qvalue_threshold : float ;
number_of _motifs : int ;

}

[@@deriving sexp]

let title = "ChIP-seq pipeline"

32

Web interface for workflows (preview)

let derive “data i =

let sample_sra = Sra.fetch_srr i.sra_identifier in
let sample_fq = Sra_toolkit.fastq_dump sample_sra in
let org = genome_of_string i.genome in
let genome = Ucsc_gb.genome_sequence org in
let index = Bowtie.bowtie_build genome in
let mapped_reads =

Bowtie.bowtie “v:2 index (" single_end [sample_fql) in
let peaks =

Macs2. (callpeak “extsize:150 “nomodel:true

“qvalue:i.macs2_qvalue_threshold
sam [mapped_reads] / narrow_peaks)

in
let genome_2bit = Ucsc_gb.genome_2bit_sequence org in
let sequences =

Ucsc_gb.twoBitToFa

Ucsc_gb. (bedClip (fetchChromSizes “sacCer2) (Bed.keep4 peaks))
genome_2bit

in
let motifs = Meme_suite.meme_chip “meme_nmotifs:i.number_of_motifs sequences in
Bistro_repo. [

["qc" 1 %> FastQC.run sample_fq ;

["peaks"] %> peaks ;

["motifs"] %> motifs

end

Web interface for workflows (prev

module Server = Bistro_server.Make(ChIP_seq_pipeline)

let () = Server.start ()

In the end, 60 lines for a web server providing a basic ChlP-seq analysis
service...

34

	First steps with Bistro
	What did we gain?

